Human parvovirus B19 nonstructural protein (NS1) induces cell cycle arrest at G(1) phase.
نویسندگان
چکیده
Human parvovirus B19 infects predominantly erythroid precursor cells, leading to inhibition of erythropoiesis. This erythroid cell damage is mediated by the viral nonstructural protein 1 (NS1) through an apoptotic mechanism. We previously demonstrated that B19 virus infection induces G(2) arrest in erythroid UT7/Epo-S1 cells; however, the role of NS1 in regulating cell cycle arrest is unknown. In this report, by using paclitaxel, a mitotic inhibitor, we show that B19 virus infection induces not only G(2) arrest but also G(1) arrest. Interestingly, UV-irradiated B19 virus, which has inactivated the expression of NS1, still harbors the ability to induce G(2) arrest but not G(1) arrest. Furthermore, treatment with caffeine, a G(2) checkpoint inhibitor, abrogated the B19 virus-induced G(2) arrest despite expression of NS1. These results suggest that the B19 virus-induced G(2) arrest is not mediated by NS1 expression. We also found that NS1-transfected UT7/Epo-S1 and 293T cells induced cell cycle arrest at the G(1) phase. These results indicate that NS1 expression plays a critical role in G(1) arrest induced by B19 virus. Furthermore, NS1 expression significantly increased p21/WAF1 expression, a cyclin-dependent kinase inhibitor that induces G(1) arrest. Thus, G(1) arrest mediated by NS1 may be a prerequisite for the apoptotic damage of erythroid progenitor cells upon B19 virus infection.
منابع مشابه
Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway
Human parvovirus B19 (B19V) infection of primary human erythroid progenitor cells (EPCs) arrests infected cells at both late S-phase and G2-phase, which contain 4N DNA. B19V infection induces a DNA damage response (DDR) that facilitates viral DNA replication but is dispensable for cell cycle arrest at G2-phase; however, a putative C-terminal transactivation domain (TAD2) within NS1 is responsib...
متن کاملHuman parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells.
Infection of erythroid-lineage cells by human parvovirus B19 is characterized by a gradual cytocidal effect. Accumulating evidence now implicates the nonstructural (NS1) protein of the virus in cytotoxicity, but the mechanism underlying the NS1-induced cell death is not known. Using a stringent regulatory system, we demonstrate that NS1 cytotoxicity is closely related to apoptosis, as evidenced...
متن کاملHuman parvovirus B19 DNA replication induces a DNA damage response that is dispensable for cell cycle arrest at phase G2/M.
Human parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitor cells, in which it induces a DNA damage response (DDR). The DDR signaling is mainly mediated by the ATR (ataxia telangiectasia-mutated and Rad3-related) pathway, which promotes replication of the viral genome; however, the exact mechanisms employed by B19V to take advantage of the DDR for virus replication ...
متن کاملThe Putative Metal Coordination Motif in the Endonuclease Domain of Human Parvovirus B19 NS1 Is Critical for NS1 Induced S Phase Arrest and DNA Damage
The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates develop...
متن کاملApoptosis of liver-derived cells induced by parvovirus B19 nonstructural protein.
Parvovirus B19 has been implicated in some cases of acute fulminant non-A, non-B, non-C, non-G liver failure. Our laboratory previously demonstrated that B19 infection of hepatocytes induces apoptosis and that the B19 viral nonstructural protein, NS1, may play a critical role. To study the involvement of NS1 in apoptosis of liver cells, we generated a fusion protein of NS1 with enhanced green f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 77 5 شماره
صفحات -
تاریخ انتشار 2003